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ABSTRACT 

Let D be a division algebra with centcr K a function field of a curve ~ over k ; 
k ( f )  = K. We study the maximal k-algebraic subfields of D. In Theorem 3.1 it 
is shown that if D is unramified and ~ is an elliptic curve then D contains a 
k-algebraic splitting field. This enables us to give a new class of counter 
examples to the Hasse principle for division algebras. 

I n t r o d u c t i o n  - -  P r e l i m i n a r y  re su l t s  

L e t  ~ be  a c o m p l e t e  r e g u l a r  cu rve  o v e r  s o m e  field k, let  K = k ( ~ )  be  its 

f u n c t i o n  f ield,  k is c o n s i d e r e d  to be  a l g e b r a i c a l l y  c lo sed  in K. T a k e  D a c e n t r a l  

s i m p l e  K - a l g e b r a ,  say  of  d e g r e e  N-" o v e r  K (i.e. of  i ndex  N) .  

If  ~,: is the  s t r u c t u r e  s h e a f  on  ~,  c o n s i d e r  shea fs  (~.~ of m a x i m a l  ~ - o r d e r s  in 

D ; i.e. F(°h ', CA) is a m a x i m a l  F(°/l, C ~ ) - o r d e r  in D for  all  affine o p e n  0~/in ~. 

It fo l lows  tha t  D is o b t a i n e d  as GA.~ wi th  3' a g e n e r i c  p o i n t  of  ~,  the  c e n t e r  of 

D is K = 0~e.~. 

W e  fix e m b e d d i n g s  of 6,~. a n d  GA in the  c o n s t a n t  shea fs  K and  D o v e r  ~. 

In [4] we o b t a i n e d  the f o l l o w i n g  d u a l i t y  t h e o r e m :  

THEOREM 0.1. Let o9.~ be the sheaf  o f  differentials on c£, define wA = 

H o m ~  ( C , ,  ~o,~). 
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Let ~ be a coherent 6A-module, define the dual sheaf ..if" = Hom~(~ ,  ~A). Then 

there exists a natural isomolphism : 

H'(%~, i f)  ~ H°(~, o~" @ ~oA) *. [] 

For invertible subsheafs of D, this result gives rise to a Riemann-Roch 

theorem, which gives information on the dimensions of the k-spaces H " ( ~ , -  ), 

cf. [4]. Invertible subsheafs of O are related to the (one-sided) ideal theory of the 

max-F(°//, 6A)-orders. 

Let 3? be such an (invertible) sheaf of (left) 6A-ideals, i.e. F(~/,37) is a left 

F(°//, ffA)-ideal for all affine open ~/. The norm map of D defines a norm map on 

the one-sided ideals, so it is possible to define N(37) which is an invertible sheaf 

on the curves ~. We define deg 3?:= deg N(3?), the right-hand side being the 

usual notion from algebraic geometry, cf. [1]. 

The Riemann-Roch theorem then states, cf. [4]: 

THEOREM 0.2. Let go : : d im~H ' (~ ,6A) -d imkH°(~ ,GA)+ l  be called the 

genus of D. Then : 

(1) dimkH°(C~,3?) is finite, 

(2) dimk H"(~, 3?) = dim~ tt°(cg, 37 'o)A) + 1 - gD + deg 37. [] 

We make these results more precise in the case 3? is a two-sided 6A-ideal. 

For a point p of qg, ~.p i,; a discrete valuation ring in K;  its maximal ideal is 

denoted by p too. 6A.p is a maximal G~..p-order with maximal ideal P. 

Some notations and terminology: the degree [C'A.p/P:~.p/P] = ckp is the 
residue class-degree of p in D. 

One has that p~A.p = pep for some ep E N, ep is the ramification index of p in 

D. Furthermore for all p E ~, cp4)p = N :, cf. [3]. 

The degree of P is [p = 16A.p/P : k]. 

A divisor 6 of D with respect to 6A is a formal sum E p ~  ordp (~)P, with 

ordp (6)@Z which is zero for almost all p. 

The degree of ~ is the number deg ~ = Ep~fp ord,(~), with ]'~ the degree of P. 

For every divisor $ we construct an invertible subsheaf of D, denoted 37(6), as 

follows: 

ord5 
37( )(0u) = {r O)1 r , Vp 

Here ~ is the sheaf with stalk 9~.~ = P in every p of ~. 

The inverse of 3?((5) is given by the dual sheaf 37(8)~; one can show that 

37(t~)~- -- ~ ( - i S ) ,  cf. [4]. It follows from the definition that deg3?(~)= deg& 

The sheaf ton can be oblained in this way, it is associated to r, a canonical 



Vol. 52, 1 9 8 5  DIVISION ALGEBRAS OVER FUNCTION FIELDS 35 

divisor of D ; K is obtained by extending a canonical divisor of the center K with 

the different A = Epc~ (ep-  1)P of D. 

If ~ is the zero divisor, i.e. ordp(~)--0 for all p, and let 

~ ( 6 )  = dimkH°(C~, 5((6)), 

then Theorem 0.2 yields the following: 

THEOREM 0.3. gD is the genus of D, gK the genus of  K. 
(1') ((8) is finite. 
(2') ( (6)  = deg6 + 1 - gD + g(K -- 6). 

And if D is a division algebra then g(r  - 3) = 0 if deg 6 > 2gD -- 2. 
(3) H°(c~, 37(~)) = ~ pc* •A.p consists of k-algebraic elements in D. In the case 

D is a division algebra, H°(C~, ~(~)) is a k-algebraic division algebra. 

(4) ¢~(~) = gA -- gD + 1, ( ( K )  = gA where gA = dimKHl(C~, 6A) called the genus 

of 6A. 
(5 ~) deg ~ = 2go - 2 = 2ga - 2e(~). 

(6) g o = N 2 g K - N 2 + l + ~ E v f , ( e p - 1 ) .  

PROOF. Cf. [4], [5]. (In [5] an idelic proof of this form of the Riemann-Roch 

theorem is given). [] 

If 6A is viewed as representing a noncommutative curve, as defined e.g. in [6], 

there is some ambiguity on what should be the field of definition. For example, in 

the case D is a division algebra, there are reasons to take the "curve" to be 

defined over L ( ~ ) =  H°(cC, L¢(~)). It is in general very difficult to obtain 

structural information on these division algebras L(~:). This problem is one of 

the basic motivations for the work reported in this paper. 
First of all we provide some quantitative information on the numbers go and 

gA, by means of examples. It follows from (6) that go is independent of the 

choice of the sheaf 6A ; it is an invariant of D. This is in general not true for gA as 

we will show. So it follows using (4) and (3) that also the ((sc), and therefore the 

L(~), depends on the sheaf 6A chosen. 

We restrict ourselves throughout the paper to the case where D is a division 

algebra. 
In [5] it is shown that if d is a maximal k-algebraic subring of D it can be 

obtained as an L (~A) for a suitable choice of 6A in D. The converse is not true. 

In view of this we consider the following questions: 

I. For which D are the f(~:A) (equivfilently gA) invariants, i.e. independent of 

the sheaf ¢7A? 
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For which D are the maximal k-algebraic sub-division algebras isomorphic (or 

the far more weaker proble~n: when do the maximal k-algebraic sub-division 

algebras have the same degree over k)? 

The first part of the question is answered positively in the case K has genus 0 

and the genus of D is minimal. In view of the examples we do not expect that 

this result can be improved much more. 

The second part, although not true in general, leads to some nice results: 

(a) It is answered positively for all division algebras over function fields with 

finite field of constants. (This is a result of A. Schofield.) 

(b) The weak form can be attacked in the case of function fields of genus 1, for 

division algebras which are everywhere unramified. The latter result is related to 

question II. 

II. For which D is k algebraically closed? 

It follows from the results obtained that these questions are related to what is 

known as "Hasse's principle". A field E is said to satisfy Hasse's principle iff: 

(HP.I) The only central simple algebras A over E split at every discrete valuation 

v of E, i.e. A @~1~,o ~- M~([iv), are the full matrix rings over E. 

The hypotheses that A is split at v, yields that v is unramified (eo = 1) in A. 

The converse is not true; thi,~ is easily seen by considering "constant extensions", 
e.g. the c.s,a. H(X) over R(X), where ILl are the Hamilton quaternions over R, is 

everywhere unramified (e~ = 1 for all p) but is not everywhere split since the 

residue algebra of the point at infinity is isomorphic to tt. 

This leads us to reformulate the Hasse principle for function fields as follows: 

(HP.II) A function field E over k is said to satisfy HP.II iff central simple 

algebras A over E which an, unramified at every k-discrete valuation v of E are 

constant extensions, i.e. A --~- a @kE for some c.s.a, a over k. 

In general there is no implication between HP.I and HP.II in either direction. 

But it is not difficult to see that the following properties hold: 

1. Let E be the function field of a curve ~ with a rational point over k ; then if E 

satisfies HP.II it also satisfies HP.I. 

PROOF. Let D over E be a division algebra which is everywhere split; by 

HP.II D ~ d@kE.  So d is imbeddable in every residue algebra of D. But if p is 

the rational point of ~, the residue algebra of D at p is MN(k), N = indexD = 

index d. This is impossible unless d -~ MN (k ) which implies D -=- MN (E ). [] 
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2. f f  k is a C,-field then both principles are equivalent. 

Note also that HP.II  states that division algebras over function fields which are 

unramified everywhere need to contain "enough"  k-algebraic elements. 

Our results for genus 0 fields show that HP.II holds in this case. For genus 1 

fields they yield the existence of algebraic splitting fields. An example is given to 

show that it is the best possible result. Since the example is constructed over a 

C~-field (k = C(t)) it also gives a counterexample to HP.I. 

Although the H.P. is a very strong property, not many counterexamples 

seemed to be known. In [7] Witt gives counterexamples for fields of genus 0 and 

in [2] Nyman and Whaples give classes of counterexamples over fields of genus 0 

and 1. However,  all these examples are "constant field extensions" over function 

fields of curves with no rational points. 

The examples following from our results on genus 1 fields are not of this form. 

The authors are grateful to A. Schofield for his interesting comments on the 

results obtained in this paper. He also gave permission to include his unpub- 

lished result, Theorem 1.1, with proof in this paper. 

1. Maximal k-algebraic sub-division algebras of D 

We start this section with three examples all showing the rather wild 

behaviour of k-algebraic sub-division algebras of D, a division algebra over a 

function field K. 

EXAMPLE 1. This will show that not all ~(s~^) are maximal k-algebraic 

subrings of D. It then follows that ~(~A) (and therefore gA) are not invariants for 

the division algebra D. 

We take k = R the field of real numbers and K a finite extension of R(X). 

Consider the division algebra H = H ( ~ K ,  where H are the Hamilton 

quaternions over R. 

Define the sheaf ~.~ by 6A,p = H@R6~.p. Clearly ~?(~:A)= H, so ((~A) = 4. 

Now suppose K is chosen so that the type number of max. F(~,  G,~)-orders in 

H is not 1, for some affine open o?/, i.e. there are non-isomorphic F(°//, C~)-orders 

in H. Let 0,4 be a sheaf of max. 6:e,-orders whose sections over ~,  F(°~/, CA.) form 

a max. F(°//,~'.~)-order not isomorphic to F(°//,GA). If 50(~)~5f (~  ') then H 

embeds in F(~/,CA,). But H contains a basis for H over K so F(°//,6A,)~ 

H @ F ( ~ ,  ~ )  ~ F(°//, C,~), a contradiction. 

Therefore  f ( s  c') is either isomorphic to C or R. It follows from the theory of 

c.s.a, that in either case Af(~') is embedded in some copy of H in D. 
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The same ideas may be used to give analogous examples over other ground 

fields. 

EXAMPLE 2. We now give a division algebra in which maximal k-algebraic 

subrings are not isomorphic'. 
Let K = Q(X) and a~, a2 be elements of Q\Q2 such that 

Q ( ~ a l )  ~ QO~a-~a2). 

Consider the quaternion algebras over Q(X): 

H~=(X2-a,a:~,  a~) and H2=(  X2-a 'a2 '  a2) 
Q(X) Q(X)  ; 

these H,,/-/2 are division algebras. 
The equation (X2-a~a2)Z~+a~Z~=l has a solution in Q(X)  if 

2 2 (X 2 -  a~a2)Z~ + a~Z2 = Z3 has a solution in Q[X]. The latter equation modulo 
X 2 - ab yields a,2~ = 2~ ; this implies either ~aa~ C Q(a~/al~la%), contradicting the 

assumptions, or ,T,~ = ,~,~ --0 m o d ( X : -  a~a2). So (X 2 -  a~a2) JZ2, Z3 and there- 

fore also (X 2 -  ala2)lZ~; starting off with a solution Z~, Z~, Z3 of relative prime 

polynomials yields a contradiction too. 

We claim that H~ ~ / / 2 .  To see this consider the symbols (X 2 - a~a~,a~) in the 

Br(Q(X)). We have: 

(X 2 -  ala2,aO.(X 2- a~a2,a2) = (X 2- a,a2,a~a2) = 1. 

Since a quaternion algebra is of exponent 2 in Br(Q(X)) it follows that 
(X 2- a~a2,aO = (X 2 -  a~a2,a2), i.e. H~ ~ H2. So H~ contains both Q(X/a0  and 

Q(XFa2); it is easily seen that H~ is not a constant extension, therefore both 
Q(~a~a0 and Q(M~a2) are maximal Q-algebraic subrings in H~. 

REMARK. The above quaternion algebra H, can also be obtained from the 

free product of the fields Q(XFa) and Q(~/b). 
Put x --X/a, y = ~/b, consider H = Q(Q(x)*Q(y) ) ,  the quotient algebra of 

the free product. 
The center of H is 

( ( x y - y x )  2 a] 
K = Q ( x y + y x )  and H = \  Q ( x y + y x )  ]" 

Take T = xy - yx; then T::= (xy + yx)~-4ab and if X = xy + yx we obtain: 

H = ( X 2 - 4 a b  a) 
Q(X) " 
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In this way many other analogous examples can be obtained. 

EXAMPLE 3. We push the above a bit further by giving a division algebra in 

which maximal k-algebraic subrings have different dimension over k. Take 

k = Q(s~), ~ a primitive 4th root of unity, K = k(X) .  
Let a, b E k such that k(Xfa) and k ( ~ )  are linearly disjoint, furthermore we 

suppose [k(V~a): k] = 2 and [k( 4~/b): k] = 4. Consider the cyclic algebra (cf. [3] 

for the notation): 

D = (1 - aX:  
k ( X )  b)4" 

It is clear that k ( ~ )  C D. We claim k ( ~ a b )  C D. This follows from the fact that 

1 - a X  2 = NL(~/b)/L ~ -  with L = k(X,~aX/-a-b-~) 

because this shows L splits D and therefore, having degree 4 over k(X) ,  it is 

embeddable in D. k (~/ab) C L yields k (X/aab) C D. 
To prove that both are maximal k-algebraic subfields, we embed them in the 

residue algebra of D at the prime p = ( 1 -  aX2). From 

~ [k(XFaa)((T))T b ) Dp = D @ k ( X ) p  = \ 

it follows that the residue algebra is k(~/a,  4VJb). 
k-algebraic subfields ( of D now satisfy two conditions: 

(a) ( is embeddable in k ( ~ / a , ~ ) .  
(b) The index of /)p @kg is equal to 4 / [ ( : k ] .  

Straightforward calculation shows that both k(X/ab) and k ( 4 ~ )  are maximal 

with respect to these conditions. 

The examples show that in order to obtain structural information on the 

k-algebraic sub-division algebras one probably needs rather strong conditions 

on k or on the division algebra. 

In the case k is a finite field there is a general result due to A. Schofield. 

THEOREM 1.1. Let K be a function field in one variable over a finite field 
k = Fq. I f  D is any division algebra with center K then the maximal Fo-algebraic 

subfields of D are all conjugated. 

PROOF. Let G , G  be two finite extensions of Fq in D. Let ql . . . . .  q, be the 
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primes dividing V,:FqIVz:F~I.  Then 

where (~j is the maximal subfield of (~ such that [t'~j :F~] is a power of % 

The unique field join of ~: and (2 is the field 

where (~ is the largest of the two fields (l j, t'~j. Since 41 and t~2 are in D, also the 

t~'j embed in D for each j. 

Put [(~:F,~] = ql )'. We claim that ~' embeds in D. The ring 

but ( '@F~K is a field, since ]Fq is supposed to be algebraically closed in K. So 

C '@FD is simple artinian, therefore it has a unique simple module. The module 

('@qD has dimension IIk~jq~ over D, so the dimension over D of the simple 

module divides h.c.f. {IIk/~q~} = 1. It follows that 4' embeds in D °, the 

centraliser of the simple module; ( '  is commutative so it embeds in D. 

It is clear that it follows from this that maximal Fq-algebraic subfields of D 

need to be isomorphic. A "Skolem-Noether"  argument proves that they are 

conjugated in D. [] 

REMARK. The proof is a simplified version of Schofield's proof. Schofield 

proves actually more, namely that the result holds for k a locally finite field and 

with K a field of any transcendence degree over k. 

It is possible to obtain more quantitative information on the degree of 

maximal Fq-algebraic subfields of a division algebra. However we then use that 

the Hasse principle holds for global fields; this is a far more deeper result than 

the ones used in the proof of Theorem 1.1. 

Let D, K be as in the theorem, 4 a maximal F,-atgebraic subfield of D. From 

the Hasse principle it follows that: 

index(D @~q ()  = l.c.m index((@r,/}p) 
P 

(p running over all primes of K). 

The local indices can be calculated via the residue algebra degrees in terms of 

[ ( : F , ] .  Since moreover index(D @Fq()= N/[4 :Fq], we obtain a formula in 

[4 :F,]  and known numbers (local information). This formula is a condition on 

[fl:Fq] for ( to be maximal Fq-algebraic, 
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2. The genus of the center is zero 

We start this section with some explicit calculations of genera in quaternion 

algebras over rational function fields. 

Let k be any field of characteristic not equal to 2. A quaternion algebra H 

over k(X)  is determined by elements f ,g in k(X). We denote 

We have a basis 1,i,],ij for H over k(X)  such that i'~ =f, j~- = g, i] = - j i .  It can 

be shown that such a quaternion algebra has a normalised form 

with p(X),  q(X)  relatively prime polynomials in k[X] without square factors. 

Define p'(X), (q'(X)) to be the product of all prime factors of p(X)  (respectively 

q (X)) for which q (X) (respectively p (X)) is a quadratic residue, and normalised 

such that ~O(X)=p(X)/p'(X) (resp. q(X)--q(X)/q '(X)) is monic. Then the 

discriminant of (k[X]-maximal orders in) H is given by the polynomial 

A~-'= (p(X)q(X)f-  

up to a constant factor in k. 

This enables us to determine the primes which ramify in H, namely, exactly 

those primes of k [X] which divide A. Normalisation with respect to k [X -1] then 

yields the ramification in the point at infinity, i.e. at the prime X -~. 

We distinguish three cases: 

1. H contains a field of algebraic elements of degree 4 over k 
Then H = h @ k k ( X )  = h(X)  for some quaternion algebra h over k; this 

follows from the fact that a k-basis for k remains linearly independent over 

k(X).  
The genus of H is minimal: i . e . g .  = - 4 +  1-- - 3  and gh = 0 for all 6A. 

(Apply formula (6) from the R.R. theorem.) 

2. H contains a field of algebraic elements of degree 2 over k 
So the normalised form is: 

H = [a f (X)  
\ k(X) ]' 

with a E k lk  2 and f(X) a square free polynomial in k[X]. The square root of 
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the discriminant A divides f (X) .  Furthermore the degree of A is even if and only 

if the degree of f (X)  is even. This follows from the fact that a prime factor p of 

f (X)  does not divide A iff a i:s a square in k[X]/(p), since a E k\k2; the latter is 

only possible if degp is even. Let m = degA, then we obtain: 

gH = - 4 + 1 + m if X ' is unramified in /4 ,  

gn - 4 + l + m + l  if X ' is ramified in H. 

Use formula (6) of R.R. again and the fact that degA 2 = 2m = Ep~x ,fp (ep - 1). 

Changing the normalisation of H by multiplying with an even power of X -1 

yields: 

with 

H = ( a  a g (X  
k(X-') ]=( k(X -1) ) 

r --: deg f if deg f is even, 

r = : d e g f + l  if deg f is odd. 

It follows that X -J divides g(X  1), and is therefore ramified in H, iff d e g f  is odd 

or equivalently if[ m is odd. It follows that gH is an odd number. 

It is easy to see that one can obtain examples of quaternion algebras with 

genus any odd integer greater than or equal to - 1. 

3. The case k algebraically closed in H 
Take p(X)  an irreducible polynomial of degree m, q(X)  an irreducible 

polynomial of degree m',  m and m'  both even or both odd numbers. Further- 

more let p(X)  be a quadratic residue modulo q(X) but not vice versa. 

Consider the quaternion algebra: 

H = { p(x) q (X)) \ k (X)  ' H h a s g e n u s : g , =  - 4 + l + m .  

Since m can be any number > 1 we obtain quaternion algebras with genus any 

integer greater than or equal to - 1 .  

In general k is not algebraically closed in H. The calculations in Example 2 

show that for odd m, i.e. ev,en g , ,  examples where k is algebraically closed are 

obtained. The converse of the latter is not true: e.g. if k is a finite field, it follows 

from classfield theory that there exists a quaternion algebra in which exactly two 

given prime polynomials ramify. Let  H '  be a quaternion algebra in which 2 
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polynomials of even degree ramify then gH, is odd. Local calculations show that k 

is algebraically closed in H' .  

From Proposition 2.2 below (the HP.II for genus zero fields) it follows that if 

g ,  < 0 then k is not algebraically closed in H in the case H is a division algebra. 

LEMMA 2.1. Let  D be a division algebra with center K, a function field of  a 

complete regular curve over k. 

Then gD < 0 if  and only if gn = 0 and go = 1 - n, where n = ~(~), ~ the zero 

divisor with respect to a sheaf  6A. In this case gA and ~(~) are invariants for the 

division algebra D. 

PROOF. If go < O, deg(~:)= 0 > 2 g o -  2 where s c is the unit divisor with 

respect to some choice of 6A. Part (2) in Theorem 0.2 yields n = ~¢(~) = 1 - go. 

Since go is an invariant for D, so is ~e(~) and consequently gA. [] 

REMARK. The fact that negative genera occur is not strange. It follows from 

the fact that the dimensions are calculated over k instead of over "algebraic 

closures" of k in D. It is therefore natural that go = 1 - n is the analogue of 

genus zero in the commutative case. Note also that in these cases gA = 0. 

We now prove that HP.II  holds for fields of genus zero. 

PROPOSITION 2.2. Let  K = k ( ~ )  be a field of  genus zero over k. Let  D be a 

division algebra with center K which is everywhere unramified, i.e. ep = 1 for all 

p E ~. Then D is a "constant  extension",  this means  D ~ d @ k K  with d a 

division algebra over k. 

PROOF. The hypotheses yield go = 1 - N  2, using (6) in the R.R. theorem. 

Lemma 1.1 then implies that D contains a subring d of k-algebraic elements of 

degree N 2. Since elements of a k-basis in d remain linearly independent in D it 

follows that d contains a K-basis for D. [] 

RZMARKS. (1) In the last section we show that HP.II  does not hold for fields 

of genus 1. However  a weaker form of the above proposition still holds, i.e. the 

fact that with the same hypotheses, k is not algebraically closed in D remains 

true. 

(2) Standard examples of division algebras of negative genus are fields of 

fractions of skew polynomial rings, D ' s  of the form d ( X ,  ~0), q~ an automorphism 

of d. Cf. [5] for detailed calculations. These are, however, not the only ones: 

Let H1 = C(X,  - ), then 

H ~ = ( T (  ~ ' ~ 1 ~ \ "  1) / w i t h T  2= X;  
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let H2 = ( ~(n ~). Suppose H, ~ d(X,  q~), then necessarily H2-~ C(X, - )  ~ H, .  

But 

Hi @R(r) H2 ~ ( 
T -~ 
R(T)-  ) ~ ( - 1 - 1  

1 
R(T) ) 

( ~  means equivalent in the Brauer group); the latter is not a full matrix ring 

over R(T), so H, ~ H2. 

3. The genus of the cente~r is 1 

In this section we consider division algebras with center function fields of 

elliptic curves. 

We obtain the following analogue for Proposition 2.2 in this case: 

THEOREM 3.1. Let D, K, k be as before. Suppose gK = 1 and ~ has a rational 

point over k, say x. I f  D is everywhere unramified, ep = 1 for all p E C, and if l)x is 

a full matrix ring. Then the maximal k-algebraic extensions in D have all the same 

degree which is equal to N = index D. 

PROOF. Suppose k is algebraically closed in D. Let C,e be the structure sheaf 

of D, 6A a sheaf of max.G~-orders in D. Let M be a maximal right ideal of ~A 

such that ~A.y = ~A.y for y ~  x. 

dimk H°(qg, M -1) == dim H°(~, J//oJA) + nA -- gA + deg M-I 

where nA = ~'(~). 

Since k is algebraically closed in D, nA = 1, degMo>A < 0 so dim H°(~,MWA) = 

0. 
Since g~ = 1, w~ = ~ implying ~OA = 6A SO gA = nA = 1. Substituting in the 

formula yields dim~H°(~,M ~) = N > 1. Let now t ~ H°(<~,M-~), t ~ k. The 

coefficients of the reduced characteristic polynomial of t are in nr(M-~). Since 

deg(nr(M ~))= 1 and ~ is elliptic these coefficients must be in k. 

So k cannot be algebraically closed in D. 

To prove that the degree of max. alg extensions of k is >= N, we remark: 

LEMMA 3.2. Let C be a maximal commutative algebraic subfield of D. I f  

( @ k D  ~ M, (E)  then ~ is algebraically closed in E. 

PROOF. Let ( '  be a commutative algebraic extension of ~ in E, with 

[ t ' :  g] = r'. Then D (~k( ' =  (D @ k ( ) @ , (  ' =  M,,(E'). This implies ( ' C  D, con- 

tradicting the assumption that t ~ is max. k-algebraic in D. [] 
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So if f is a max. c o m m u t a t i v e  a lgebraic  extension of k in D, let f @ k D  = 

M r ( E )  for  some  division a lgebra  E. Then  according to the l e m m a  ~ is 

algebraical ly closed in E. But  E inherits all hypotheses  of D so E must  be equal  

to a c o m m u t a t i v e  field. T h e r e f o r e  [ ( :  k]  = N. 

It follows that  for max.  algebraic  sub-division rings d in D the degree  _-> N. 

H o w e v e r  since d is imbeddab le  in all residue algebras  of D, also in M N ( k )  the 

residue a lgebra  of x, so [d :k]<= N. This implies that  all max. k -a lgebra ic  

subrings are commuta t i ve  fields of degree  N. []  

This t h e o r e m  yields a class of coun te rexamples  for HP. I I .  The  following 

example  shows that  this class is not empty .  Since in the example  the ground field 

k is a C1 field it also gives a coun te r example  to the classical Hasse  principle 

(HP.I) .  

T a k e  

k = C ( t ) ,  c £ = ;  y Z = x  3 _ X .  

t x)) 
H =  k (x ,  y " 

The  principle divisor (x)  = 2 0  - 2P, where  O is the point  at infinity and P is the 

origin. 

Since k is C1 it follows that  x is locally a norm so H is locally trivial 

everywhere .  But  H itself is a division algebra.  

To  see this consider  t f  2 + xg  2 = 1. First note  that  f or g cannot  have poles in t 

since t f  2 has then an odd pole in t and gZ has an even pole in t; these cannot  

cancel out.  

Now subst i tute  t = 0, then xg  '2 = 1 cannot  have a solut ion in C ( x , y )  since x is 

not  a square  in C(x ,y ) .  So the above  equa t ion  has no solut ion in C ( t ) ( x , y ) .  
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